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Abstract. Results aggregation by disjoint graph merging is potentially a good 
alternative to image stitching. During the processing of image mosaics, it allows 
to be free of radiometric and geometric corrections inherent in image fusion. 
We have studied and developed a generic merging method of disjoint graphs for 
tracking cell alignments in image mosaics of wood. 
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1 Introduction 

Graph theory is widely used in image processing [1] especially for region encoding or 
image segmentation. The image is then considered as a graph whose vertex set is 
made of pixels, and edge set is given by an adjacency relation between them. Numer-
ous segmentation methods based on region merging are proposed in literature, the 
most known being the Split and Merge algorithm. Several authors combine it with the 
watershed algorithm by using graph fusion to segment grey [2] or color [3-4] images. 
In all these approaches, the fusion operates on the vertices of a single graph. 

Our specific segmentation method of cell alignments, so called cell files, in wood 
slices produces an adjacency graph. Nevertheless, identifying cell files on very large 
areas given by images mosaic implies either to process the image resulting from com-
bining all the images of the mosaic or to merge the results produced by processing 
each image.  

In the first case, stitching is the method which is the most often used. Image stitch-
ing combines multiple images with overlapping fields of view in order to produce a 
high-resolution image. Most of the algorithms require nearly exact overlaps between 
images and identical exposures to produce seamless results [5-6]. Moreover, they 
often request local deformation correction [7-9] due to optical acquisition properties, 
or local offset rectification [10] due to the automated views shooting. However, the 
resulting high resolution images may still be difficult to be processed, especially from 
the final resolution (up to several billion pixels) and the possible radiative variation 
due to the microscope acquisition properties.  
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ment are independent of the image orientation: the meth
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cing by a Difference of Gaussian filtering on color images of
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on is built from watershed process [18]; the crest lines 
correspond to the inter-cells separation (Fig. 4.). The c
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st linear paths whose adjacent vertices present similar c
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ity of replacing in the function fusion the position terms
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by studying the distribution of cell sizes. Study will see

e covering of vessels can only be partial. 

41 

cur-
s by 
im-

defi-
tive 
icu-

im-
size 

at at 
ally 
fety 
An-

ze is 
mi-

Im-
s 10 

ggest 

ssel 
dis-
hod 
rom 
cal-
ek a 



42 G. Brunel et al. 

6 Conclusion 

Image mosaic processing is a classical research thread in vision. We presented a ge-
neric method for aggregating results by merging disjoint single-graphs, i.e. undirected 
graphs without loops; as an alternative to image stitching. 

We defined a fusion function of vertices based on the evaluation of a similarity 
coefficient. This function is an involution without fixed point allowing the determin-
ing of the amalgamating kernel, i.e. the set of points that are two by two merged. The 
similarity coefficient does not depend on the graph structure, but only on attributes 
contained by vertices of the graphs. So it is adaptable to other attributes in regard to 
the study object. 

We have developed and implemented this method in the context of tracking cell 
files in image mosaics describing large viewing zones. Cells individualization in each 
image was obtained by watershed algorithm; the obtained crests lines are used to de-
fine the cells adjacency graph, which allows to identify cell files. It is defined as the 
straightest paths whose adjacent nodes have similar attributes. Aggregation of files on 
consecutive images in the mosaic is realized by fusing graphs in order to avoid the 
inconvenience related to the stitching: radiometric equalization, image repositioning, 
blur correction and local deformation compensation… 

Applying the method requires only to define explicitly the similarity coefficient 
and involution. The similarity function is defined by a product of normalized Bray-
and-Curtis dissimilarity estimators describing the geometrical aspects -position and 
size- of cells which can potentially be merged. In case of merging, only the less 
blurred cell is retained and the local blur estimator is based on the relationship be-
tween local dynamics and intensity differences. A study is engaged to introduce a 
component characterizing the dynamics of the cell, and so to be free of positioning 
criteria. Finally, the fusion method is insensitive to image blurring. 

This generic method could be applied on other kinds of images of very high defini-
tion when we wish to avoid stitching as for example satellite images. 

Acknowledgment. The authors gratefully acknowledge Yves CARAGLIO and Chris-
tine HEINZ for their involvement in this work, their advices and availability. A big 
thank to Michael GUEROULT without whom the laboratory work would not have 
been possible. 

This work is jointly funded by a doctoral fellowship of the Labex NUMEV, by the 
SIBAGHE Graduate School of the University Montpellier 2 and by the Scientific 
Council of the University Montpellier 2. 

References 

1. Lézoray, O., Grady, L.: Image processing and Analysis With Graphs. CRC Press (2012) 
2. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs: merging properties and 

watersheds. Journal of Mathematical Imaging and Vision 30, 87–104 (2008) 



 Simple-Graphs Fusion in Image Mosaic 43 

3. Baldevbhai, P.J., Anand, R.S.: Review of graph, medical and color Image base Segmenta-
tion Techniques. Journal of Electronical and Electronics Engineering 1, 1–19 (2012) 

4. Peng, B., Zhang, L., Zhang, D., Yang, J.: Image segmentation by iterated region merging 
with localized graph cuts. Pattern Recognition 44, 10–11 (2013) 

5. Brown, M., Lowe, D.G.: Automatic Panoramic Image Stitching using Invariant Features. 
International Journal of Computer Vision 74, 59–73 (2007) 

6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60, 91–110 (2004) 

7. Clenti, C.: Architectures flot de données dédiées au traitement d’images par Morphologie 
Mathématique, Thèse de doctorat en morphologie mathématique. In: ENSMP,vol. (431) 
(2009) 

8. Sun, C., Beare, R., Hilsenstein, V., Jackway, P.: mosaicing of microscope images with 
global geometric and radiometric corrections. Journal of microscopy 224, 158–165 (2006) 

9. Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust mosaicing 
with correction of motions distorsions and tissue deformations for In Vivo Fibered Micro-
scopy. Medical Image Analysis 10, 673–692 (2006) 

10. Thévenaz, P., Unser, M.: User-friendly Semiautomated Assembly of Accurate Image Mo-
saics in Microscopy. Microscopy Research And Technique 70, 135–146 (2007) 

11. Liang, C., Filion, L., Cournoyer, L.: Wood structure of biotically and climatically induced 
light rings in eastern larch (Larix laricina). Canadian Journal of Forest Research 27,  
1538–1547 (1997) 

12. Wilson, B.F.: The Growing Tree. The University of Massachusetts Press, Amherst (1970) 
13. Gindl, W.: Cell-wall lignin content related to tracheid dimensions in drought-sensitive aus-

trian pine (pinus nigra). Iawa Journal 22, 113–120 (2001) 
14. Brunel, G., Borianne, P., Subsol, G., Jaeger, M., Caraglio, Y.: Automatic characterization 

of the cell organization in light microscopic images of wood: application to the identifica-
tion of the cell files. In: Plant Growth Modeling, Simulation, Visualization and Applica-
tions, vol. 4, pp. 58–65. IEEE Press (2012) ISBN 978-1-4673-0070-4 

15. Kennel, P., Subsol, G., Guéroult, M., Borianne, P.: Automatic identification of cell files in 
light microscopic images of conifer wood. In: 2nd International Conference on Image 
Processing Theory Tools and Applications, pp. 98–103 (2010) 

16. Sjodahl, M., Oreb, B.: Stitching interferometric measurement data for inspection of large 
optical components. Optical Engineering 41, 403–408 (2002) 

17. Wyant, J.C., Schmit, J.: Large field of view, high spatial resolution, surface measurements. 
In: International Conference on Metrology and Properties of Engineering Surfaces, vol. 38, 
pp. 691–698 (1998) 

18. Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on 
Immersion Simulations. IEE Transactions on Pattern Analysis and Machine Intelli-
gence 13, 583–598 (1991) 

19. Tremeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. 
IEEE Transactions on Image Processing 9, 735–744 (2000) 

20. Beucher, S.: Watershed, Hierarchical Segmentation and Waterfall Algorithm. In: Proc. 
Mathematical Morphology and its Applications to Image Processing, pp. 69–76 (1994) 

21. Ladjal, S.: Blur estimation in Natural Images. In: 15e congrès francophone AFRIF-AFIA 
Reconnaissance des Formes et Intelligence Artificielle, pp. 112–124 (2006) 

22. Brunel, G., Borianne, P., Subsol, G., Jaeger, M., Caraglio, Y.: Results reliability of the au-
tomated identification of cell files in microscopic images of gymnosperms. In: 7th Interna-
tional Conference on Fuctional-Structural Plant Models (2013) (in submission) 


